3D Semantic Segmentation with 3D LiDAR Point Clouds and 2D Camera Images
for Autonomous Driving

Anze Liu
Stanford University
Stanford, CA

anzeliu@stanford.edu

Abstract

3D point clouds and 2D images are two different data
representations of the objects and scenes in our physical
world. Autonomous driving systems, a sector in rapid
growth and development, have their data collected through
various mediums and processed in various forms. Among
which, LiDAR sensors and cameras are two primary ways
of capturing the data for self-driving cars. Whether the ve-
hicle’s visual understanding of its surroundings is obtained
from only 3D point clouds, or only 2D images, or both,
the tradeoff in accuracy and efficiency is actively being ex-
plored by researchers. Leveraging the recent advancements
in point cloud transformers and vision foundation models,
this project aims to aggregate the information learned from
the two different modalities, 3D LiDAR point cloud and 2D
camera images, to perform 3D semantic segmentation on
outdoor scenes. The final results showed an improvement
in the average intersection over union score from 0.5935 by
the baseline to 0.6975 by the best performing fusion model
developed, on the test split of the down-scaled nuScenes.

1. Introduction

3D semantic segmentation enables autonomous vehicles
to understand and track the surroundings. The two pri-
mary sources of data for such tasks are the 2D images taken
by cameras facing different directions away from the self-
driving vehicle and 3D point clouds collected by LiDAR
sensors installed at the top of the vehicle. Different from
ordered pixels as in image data, point clouds are sparse and
unstructured. Since images are often collected alongside
LiDAR data, how to leverage multiple modalities to further
improve the 3D segmentation performance is an active area
of research. While some 2D-3D fusion methods have been
developed, the recent state-of-the-art methods for 3D seg-
mentation are predominantly focused on 3D data. Inspired
by the recent development in point cloud transformer mod-

els and vision foundation models, this project will be ex-
ploring the extraction of 3D point cloud features and 2D
camera image features followed by effectively integrating
2D-3D features for outdoor scene 3D semantic segmenta-
tion. The fusion method developed to integrate the 2D and
3D features ultimately achieved an improvement on the pri-
mary mloU metrics and convergence speed.

1.1. Problem Statement

This project aims to predict the semantic label of every
point in the point clouds from the down-scaled nuScenes
dataset, by extracting 3D LiDAR point features with Point
Transformer V3 (PTv3), extracting 2D camera image fea-
tures with DINOv2, and aggregating them to leverage the
multi-modalities for 3D semantic segmentation. The input
to the algorithm is the point clouds and images, of which
features will be extracted with PTv3 and DINOV2, respec-
tively. A fusion model is developed to encode the extracted
features of the two modalities to the same latent space fol-
lowed by merging the information learned to output pre-
dicted semantic segment labels for each point in the point
cloud. This project explored the extent to which 3D se-
mantic segmentation of outdoor scenes can be improved by
incorporating both camera and LiDAR sensor data, instead
of using the point clouds as the only data to learn from.

2. Related Work

Feature representations of point clouds is key to
model learning and can be grouped into three categories.
Projection-based methods project 3D points to a 2D plane
and perform 2D CNN, which is runtime efficient but re-
sults in 3D information loss. Voxel-based methods trans-
form point clouds into voxel grids and apply 3D convolu-
tion or sparse convolutions, but face scalability issues as
they are constrained by kernel size but need to achieve large
receptive fields. Point-based methods operate directly on
the points, such as PointNet [§]], but the unstructured na-
ture of point clouds impact their computational efficiency.

Sparse Point-Voxel Convolution (SPVC) [10] uses both
point-based and voxel-based methods but on two different
streams of operations to, respectively, preserve geometrical
information and enable large receptive fields, followed by
fusing the information of both streams.

Applying self-attention networks to 3D point cloud pro-
cessing is natural as self-attention is invariant to permuta-
tion and input cardinality, while 3D point clouds are essen-
tially sets of sparse unordered points in 3D space. Point
Transformer (PT) [14] is composed of 3 types of blocks:
Point Transformer Block that performs self-attention among
points, Transition Down Block as an encoder, and Transi-
tion Up Block as a decoder, symmetric to the Transition
Down Block as in a U-net structure. The PT decoder in
the final layer produces a feature vector for each point and
an MLP follows to map it to the final logits. Superpoint
Transformer [9]] partitions point clouds into a hierarchical
superpoint structure and applies the self-attention mecha-
nism to capture relationships among superpoints, achieving
a model with comparatively fewer parameters but similar
performance with other larger models. Both transformer ap-
proaches aim to partition and structure the unordered point
clouds in ways to be better understood by the encoder-
decoder style architecture.

Along with the use of Transformer for point cloud
segmentation, Vision foundation models use Vision-
Transformer (ViT) [4] to train on large-scale image datasets
and produce high-quality visual features. One foundation
model is Distillation with No Labels (DINO) [3]], composed
of self-supervised Vision Transformers with knowledge dis-
tillation, trained on ImageNet without labels. Given an im-
age, DINO creates global and local views via data augmen-
tation to encourage the model to recognize the same content
across different contexts and scales. The student-teacher
framework is core to DINO, where the student network
processes multiple augmented views of an image and the
teacher processes global views only. While both networks
have the same structure, student parameters are updated by
backpropagation, whereas teacher parameters are updated
with an exponential moving average of student parameters.
The teacher is observed to have better performance than the
student throughout training, acting as a guidance to the stu-
dent by providing higher quality target features for the stu-
dent. Both networks produce probability distributions over
the dimension of “prototype scores” and cross-entropy loss
is computed to measure difference in output distributions.

The combination of 3D point cloud and 2D images fea-
tures to achieve 3D semantic segmentation are being ex-
plored more recently compared to single-modal data based
segmentation. MSeg3D [J5]], which implements geometry-
based and semantic-based fusion techniques, is one of the
early models using both LiDAR and camera data to achieve
comparable results with the state-of-the-art LiDAR only

methods. BEVFusion [6] transforms camera and LiDAR
features to the shared bird’s-eye view (BEV) representation
space and fuses the concatenated BEV features with fully-
convolutional BEV encoder. DINO in the room (DITR)
[L3], an approach presented in a very recent paper with code
not yet published, takes advantage of 2D foundation model
to extract image features, projects them to 3D, and finally
injects them into a 3D point cloud segmentation model.
DITR has two variants: an injection approach that uses
2D features from DINOv2 and a distillation approach that
aligns 3D features with DINOv?2 features during a pretrain-
ing phase, which can be used for cases when images are un-
available during inference. The 2D image features extracted
by DINOV2 are reverse projected to 3D point cloud and then
max-pooled to different scales, such that they can be added
to the skip connection between the pair of encoder-decoder
blocks in a U-net style 3D point backbone.

Point Transformer V3 (PTv3) [12] and DINOv2 [7]] are
the two backbone models used in this project. PTv3, dif-
ferent from its previous versions, utilizes serializations to
structure points into formats that enable the attention mech-
anisms to better capture spatial and contextual information.
Scalability and efficiency improvement is core to PTv3.
To more efficiently define the spatial proximity of points,
space-filling curves are used to serialize point clouds. PTv3
also uses a patch attention mechanism that groups the points
into non-overlapping patches to perform attention within
each individual patch. As relative positional encoding is ob-
served to be inefficient in point cloud transformers, PTv3 in-
stead prepends a sparse convolution layer with skip connec-
tion before the attention layer as a conditional positional en-
coding to decrease latency. DINOv2 explores how to learn
visual features that can be used to perform better on a va-
riety of downstream tasks without fine-tuning compared to
those task-specific models. Different from DINO, DINOv2
is trained on 142 million images, softmax normalization in
the teacher is replaced with Sinkhorn-Knopp batch normal-
ization, and a patch-level task iBOT is added to mask out
parts of input image to student so that the student’s guess of
what is hidden can be compared with what the teacher sees
from the complete image. In general, DINOv2 learned its
features with a discriminative self-supervised method that
combines DINO and iBOT losses with Sinkhorn-Knopp
normalization, achieving more stabilized, accelerated learn-
ing when scaling up model and data sizes.

3. Methods

The proposed method runs the pretrained PTv3 back-
bone to extract point cloud features and runs the pretrained
DINOV2 backbone to extract image features. To aggregate
both features, fusion models are developed to combine the
information learned from points and images, followed by
transforming the joint features to semantic classes.

P: number of points in point cloud H;: height of resized image
V: number of voxels W.: width of resized image

M: number of image patches

Pred Segment
Loss: Cross-Entropy + Lovasz }4‘ Segn;’e:tlicores

1x Lidar Point Cloud

Transform Voxels
— PTv3 >
Vx4

6x Camera Images Transform‘ Images - R
6 x 3 x 900 x 1600 “l6x3xH x W, 7

A
Point Feature Voxel-to-Point Inverse
Vx 64 S - S S
egmentation egment Scores
2D-3D Fusion H Head }—> Vx 16
Patch Tokens
6xMx 384

Figure 1: Architecture of the proposed method: point cloud feature extraction with PTv3, image feature extraction with
DINOV2, and fusion of extracted features, followed by obtaining the normalized segment class scores and the actual predicted

lidar segment index.

2D-3D Feature Fusion Model:
Fusion by Multiplication of Aligned Features
s 3
Point Feature Linear

Vx 64 | 64—D |
X 6 ‘—>J

Matrix ’
[Multiply MLP }»
r 3
Patch Tokens N Linear |
6x M x 384 \ 384 - D /
\ J

Figure 2: Direct Fusion model: fusion by multiplication of
dimension-aligned features.

2D-3D Feature Fusion Model: \
Fusion of Features Extracted based on Point-to-Pixel Projection
Point Feature (Concat MLP
Vx 64 Lv X (64 +384)
Point Associated
Average Pool
Patch Tokens V x 384
Vx6x384 x

v

Patch Tokens Extract Patch Image Patch Index
6 X M x 384 Tokens | ¥, 2) = (Pi, P))
Point Coordinates T

Vx3 Point-to-Pixel |__[Pixel on Original Img _>Pixcl on Resized Img
Cameras Extrinsic Projection (%, %,2) = (u, V) (X, y,2) = (u, V)
and Intrinsic

Figure 3: Projection Fusion model: fusion of features ex-
tracted based on point-to-pixel projection.

3.1. 3D LiDAR Point Cloud Feature Extraction

PTv3 is used as the primary backbone to extract point
cloud features. The published pretrained model with
weights has 46.16 million parameters, takes point cloud
data as input, and outputs point features with embedding
dimension 64. PTv3 is composed of three stages: (1) seri-
alization, (2) a series of encoders, each with a grid pooling
layer, serialized orders shuffling, and a Point Transformer
block, ending with (3) a series of decoders, same structure

as encoder but with different number of Point Transformer
Blocks and mirroring to the encoders as in a U-Net style.
The grid pooling layer in encoder first splits a set of points
into non-overlapping partitions, then fuses the points from
the same partition by max pooling the point features and
average pooling the point coordinates.

When PTv3 was trained previously, model evaluation
was computed after applying grid sampling (voxelization)
on the points cloud to provide an initial performance as-
sessment. While at test time, the point cloud is subsam-
pled into a sequence of voxelized points clouds, which are
then individually predicted and collected to form a com-
plete prediction of the entire point cloud. In addition, test
time data augmentation is performed by default in the orig-
inal PTv3 to further enhance prediction stability. For this
project, model evaluations for both training and inference
are computed in the same way: the metrics, including in-
tersection over union, are calculated based on the segment
prediction on the entire set of the original points instead of
the voxels. This gives a more precise and consistent evalu-
ation results. Also, the validation and test datasets are pre-
processed the same way as the training dataset, without any
test time augmentation, to decrease inference durations.

3.2. 2D Camera Image Feature Extraction

As a separate stream of feature extraction, the pretrained
DINOvV2 ViT-S/14 backbone model with 22.06 million pa-
rameters, distilled from the large ViT-g/14, is used to pro-
duce visual features from camera images. This version of
DINOV2 has 12 Transformer blocks and each layer outputs
patch tokens of dimension 384. In the original approach
for image semantic segmentation task, the patch tokens of
the last 4 layers are concatenated to produce the class log-
its. However, for this project, only one of the last 4 layer’s
patch tokens will be used for feature fusion; experiments on
using the 9th or the 12th layer’s patch tokens will be con-
ducted. As shown in Figure [and [5] the extracted image
patch tokens encode information about the scene geometry.

CAM_FRONT CAM_FRONT

CAM_BACK

Figure 4: PCA visualization: first 3 principal components
of patch tokens extracted by DINOv2 9th transformer layer

CAM_FRONT CAM_FRONT

CAM_BACK_RIGHT

Figure 5: PCA visualization: first 3 principal components of
patch tokens extracted by DINOv?2 12th transformer layer

The 9th transformer layer encodes more general structure of
the regions in scene, whereas the 12th layer encodes more
specific object shapes and boundaries.

3.3. 2D-3D Feature Preparation

The point and image features are extracted and saved to
.pt files on disk to enable more efficient development and
training of the fusion model starting from the already ex-
tracted features rather than from the raw data. The fea-
ture dataset used as input to the fusion model does not
only have the extracted voxel features and image patch to-
kens features, but also contains voxel coordinates, ground
truth voxel segments, and voxel-to-point inverse vectors
for point cloud related data, LiDAR point to camera co-
ordinates transformation and LiDAR point to image pixels
transformation matrices for image related data.

As different samples can have different numbers of
points in the point cloud, the extracted point features
are padded with zeros to enable batch fusion processing,
thus the point feature vectors loaded in batch have shape
(batch_size, max_num_voxels, 64). Every sample has 6 im-

ages of the same resolution and transformed with the same
pipeline, so there is no additional processing when loading
the batched extracted image features.

3.4. 2D-3D Feature Fusion Model

Two variants of the fusion model are developed: 1) Di-
rect Fusion: fusion by multiplication of dimension-aligned
features and 2) Projection Fusion: fusion of features ex-
tracted based on point-to-pixel projection.

In the Direct Fusion approach, shown from Figure 2] the
extracted point feature and image feature are linearly pro-
jected to the same embedding dimension from their respec-
tive model output dim. Batch matrix multiplication is ap-
plied to the linearly transformed features to merge learned
information from both point cloud and camera images. A
two-layer MLP with ReLU activation is applied to output
the final point embeddings.

In the Projection Fusion approach, shown from Figure 3]
the 3D voxels centers are projected to the 2D camera im-
age of the original 900 x 1600 resolution using the LIDAR
to image rotation-translation matrix, which is constructed
from world-to-camera extrinsic and camera intrinsic param-
eters. Each projected pixel is scaled such that its coordi-
nates are in the resized image resolution; the resized images
were taken as input to DINOv2 during the feature extraction
process. The pixel coordinates are then converted to image
patch index: patch at row i, col j of the image containing that
pixel. The patch token at that specific patch index, which is
associated with the voxel being projected, is extracted. This
point-to-pixel projection and point-associated patch token
extraction process repeats for each of the 6 camera images.
Average pooling is applied to the associated patch tokens to
obtain one patch embedding in dimension 384 for each pro-
jected voxel. 2-layer MLP with ReLLU activation is applied
to fuse the learned point and image representations.

More specifically on the point to pixel projection,
given a point coordinate (z,y, z), as well as the precom-
puted LiDAR-to-camera and LiDAR-to-image rotation-
translation matrices, the projection of this point to a 2D
camera image can be performed with the following steps:

1. prepare point in homogeneous coordinate: (z,y, z, 1)
2. project point to pixel in image using the 4 x 4 rotation
translation matrix RT}idarimg

= RTjidar2img

— & e g

1

3. normalize u, v, w by dividing by w to obtain the final
projected pixel on image as (u/w, v/w).
Additionally, depths is computed by projecting point
to camera coordinates, similar step as above but with
RTjigaracam transformation matrix. Depths is used to check if

the projected pixel is a valid pixel in the image: not behind
the camera. Depths along with the projected pixel coordi-
nates in image are used to create a projection mask to mask
out those points that have projected pixels outside of the im-
age boundaries or behind the camera, for each of the 6 cam-
era images per sample. For the invalid points for an image,
there are no associated patch token features thus the visual
features for those points from this specific image would be
all zeros.

3.5. Prediction of Segment Class

As shown in Figure [T} after the 2D-3D fusion model
outputs, a linear segmentation head is applied to transform
learned joint embeddings to segment scores for each of the
voxel, for all 16 classes. The voxel-to-point inverse is ap-
plied to map back to the original point space and thus ob-
taining the segment scores for each point. When train-
ing the fusion model, the sum of Cross-Entropy loss and
Lovasz-Softmax loss [[1] is computed from the ground truth
point segment index and predicted point segment scores, as
the objective to minimize with gradient descent. Lovasz-
Softmax loss incorporates the softmax operation, computes
a vector of pixel errors from the class probabilities, and con-
structs a loss surrogate to Jaccard index for each class, from
which the average of the class-specific surrogates is taken,
to offer better optimization of mloU for the segmentation
task.

4. Dataset and Features

nuScenes [2] is a public large-scale dataset collected by
the sensor suite installed on self-driving cars. The origi-
nal entire nuScenes dataset contains 1.4 billion annotated
points across 40,000 point clouds and 1000 scenes. Each
scene has 20 seconds of data sampled at 2Hz, thus 40
keyframes or samples per scene. For this project, a down-
scaled, mini version of the nuScenes and nuScenes-lidarseg
[[L1] datasets are used: 323 training samples with a total of
10831744 lidar points to label, 40 validation samples with
1388928 points, and 41 test samples with 1423552 points.
Each sample has one point cloud captured with a 32-beam
LiDAR and 6 images each collected by a camera of different
orientation, identified as front, front-left, front-right, back,
back-left, and back-right. The semantic segmentation labels
are annotated on the point clouds but not on the images.

Each LiDAR point is defined by 3D spatial coordinates
and LiDAR intensity: (z,vy,z,s). Different samples can
have different numbers of points, thus the points for a sam-
ple i is represented in a N; X 4 matrix, where N; is the
number of points in sample i. Each camera image is rep-
resented as a 3 x 900 x 1600 (channels x height x width)
matrix. Every LiDAR point is annotated with one of 32 pos-
sible semantic labels, of which 16 classes are used for lidar
segmentation task due to having limited samples for some

(b) 22928 voxels

(c) 900x 1600 original image (d) 640x 1138, normalized

Figure 6: Visualization of original point cloud and a camera
image compared to the preprocessed point cloud and image
to be taken by the feature extraction algorithm as input. (a)
and (b) may look the same as voxel grid size is small, Scm.

of the labels; similar classes were merged and rare classes
removed.

4.1. Data Preprocessing and Augmentation

Point cloud preprocessing includes grid sampling (vox-
elization) with a grid size of 5cm to divide the point cloud
into fixed-size voxels and each voxel has one representative
point. In addition to the points coordinates and intensity,
other point cloud information is preprocessed and loaded
along during training and inference, including the inverse
vector that maps which points are represented by the voxel,
to be used after voxel segment prediction to revert from the
voxels back to the points; the model predicts the segment
for each voxel and all the original points represented by the
same voxel would have the same segment.

Image preprocessing involves resizing to 640x1138
and normalization by subtracting mean (123.675, 116.28,
103.53) and divide by standard deviation (58.395, 57.12,
57.375), which are the defaults used for DINOv2 back-
bone pretraining. The image patch size is 14, resulting in
46 x 82 = 3772 patches per image. The transformation
matrices that convert LiDAR points coordinates to camera
coordinates and to image coordinates are also precomputed.

5. Results

Three evaluation metrics are used to assess and com-
pare the model performance: mean intersection over union
(mIoU), mean accuracy (mAcc), and frequency-weighted
IoU (fwloU), which are all computed from the True Posi-
tive (TP), False Positives (FP), and False Negatives (FN) of
the predicted segments compared to ground truth segments.

mloU
= ProjectionFusion_hidden_dim128_DINOLayer12
DirectFusion_hidden_dimé64_DINOLayer12

== NolmageFeat

0.8 o A e ML

.........................
,,,,,,,,,,,

0.6
0.4

0.2

Step

Figure 7: Training mloU for each of the approaches with
final evaluation results in Table E}

mloU is the primary metrics for method comparisons. Lidar
segmentation index 0 is ignored as 16 lidar segment labels
of the general 32 nuScenes annotated labels are predicted.
1. IoU= W&%’ mloU = mean IoU over all classes.
2. Accuracy = TPiiPFN’ the total number of correctly pre-
dicted points divided by the total number of points; in-
tersection over target. mAcc is the mean accuracy over
all classes.
3. fwloU is the sum of the IoUs of all classes, each
weighted by the point-level frequency of its class.

The hyperparameters, such as learning rate, batch size,
and MLP hidden dimension, are chosen by running iter-
ations of experiments with different values. Example of
tuning the MLP hidden dimension is shown in Figure [8]
based on which 128 is chosen as the hidden dim. After the
point associated patch tokens are identified, averaged and
then concatenated with the point features, this joint feature
vector has an embedding dim of 64 + 384 = 448. If the
MLP hidden dimension is too small, e.g. 16, there can be a
greater loss of information when attempting to transform to
the class logits and the convergence of learning is slower.

* optimizer: AdamW

* batch size: 12

* learning rate: 0.002

» weight decay: 0.005

e epochs: 10

5.1. Quantitative Results

As shown from evaluation results in Table |1} the best
performing model variant is Projection Fusion: PTv3 +
DINOvV2 9th layer, with MLP hidden dimension of 128.
This projection fusion model improved the mloU on val-

mloU

ProjectionFusion_hidden_dim128 = ProjectionFusion_hidden_dim16
ProjectionFusion_hidden_dimé64

0.8
0.6
0.4

0.2

Step

Figure 8: Training mloU during hyperparameter tuning of
the MLP hidden dimension for the projection-based fusion
model with DINOv2’s 9th layer patch tokens.

idation set by 5.7% compared to the baseline model, and
reached 0.6975 mloU on the test set compared to the base-
line 0.5935. The baseline model is the PTv3 backbone and
default linear segmentation head that have weights trained
on all nuScenes training set and released publicly. Since a
down-scaled version of the nuScenes dataset is used in this
project, the data distributions and representativeness are dif-
ferent from the full dataset. Therefore, the baseline model
results presented in the table are obtained by directly mak-
ing inference on the down-scaled dataset.

Based on Figure [/ which shows the training mIoU for
each of the model variant experimented, both variants of
the Projection Fusion approach, one using patch tokens of
DINOV2 layer 9 and another using that of layer 12, con-
verge faster on the mloU value during training and reached
the highest final training mloU, 0.77 and 0.75, respectively.
In contrast, the Direct Fusion variants reached around 0.69
mloU at the end of the 10 epochs. The metrics results of
Projection Fusion being higher than baseline and Direct Fu-
sion being lower than baseline is, to an extent, within expec-
tations, as simply multiplying the point features and image
patch tokens does not really encourage the fusion model to
capture the key features of both modalities. Whereas by ex-
plicitly identifying the patch in image associated with each
of the voxels enables the fusion model to learn how to let
the image features influence the segment class predictions.

Furthermore, the evaluation results for Projection Fusion
using DINOV2 layer 9’s patch tokens and that using layer
12’s patch tokens are quite similar. This can suggest that,
although layer 12 extracts more detailed objects geometry
compared to layer 9, the features that the fusion model pri-

Val Test
Method mloU | mAcc [fwloU | mloU [mAcc | fwloU
Baseline: Released PTv3 nuScenes Segmentor | 0.6392 | 0.6910 | 0.9641 | 0.5935 | 0.6416 | 0.8566
Simple: PTv3 + Linear Seg Head 0.6483 | 0.6989 | 0.9600 | 0.6936 | 0.7448 | 0.8571
Direct Fusion: PTv3 + DINOvV2 9th layer 0.5993 | 0.6391 | 0.9528 | 0.6549 | 0.6943 | 0.8317
Direct Fusion: PTv3 + DINOv2 12th layer 0.6180 | 0.6663 | 0.9545 | 0.6619 | 0.7130 | 0.8345
Projection Fusion: PTv3 + DINOv2 9th layer | 0.6757 | 0.7238 | 0.9633 | 0.6975 | 0.7421 | 0.8568
Projection Fusion: PTv3 + DINOv2 12th layer | 0.6730 | 0.7266 | 0.9638 | 0.6854 | 0.7338 | 0.8557

Table 1: Results on down-scaled validation and test dataset with the experimented approaches.

Projection Fusion - Lidar Segmentation Class loU on Down-Scaled nuScenes Validation Dataset

10 0986 0974 0972 m 11: driveable_surface
0.929 ion
0.864

0.827
08

0677 6sa

0.6

Iou
°
Y
&

0.4

IRRRRRnNnnnnnni

0.312

02

0.0

n 1. 15 4 137 2 8 18 6 10 1 3 5 9 12
Lidar Segmentation Index

Figure 9: Lidar semantic segmentation class IoU of the
best performing Projection Fusion on validation dataset.
Due to using down-scaled dataset, the validation samples
do not have any points labeled as barrier, bus, construc-
tion_vehicle, and trailer, so the 0 IoU for lidar segmentation
index 1, 3, 5, 9 actually means both the ground truth and
predicted segments do not have those classes: union is 0.

oritizes to learn from the patch tokens are actually quite
similar. Nonetheless, further experiments would need to
be conducted to see if a single layer’s patch tokens would
be sufficient to influence the point segmentation or multiple
layers’ output would need to be concatenated and used, as
in the original DINOv2 image semantic segmentor.

5.2. Qualitative Results

The predicted semantic segmentation are, in general,
quite successful, as visualized in Figure@ However, there
are still some challenging parts in the point cloud that are
not classified correctly. For the sample in the second row,
the ground truth render has the points on the L-shaped side-
walk labeled with purple, but the prediction has those about
one-third of those points classified as drivable surface, in
turquoise color. This may be misled by the lack of apparent
street curb.

Compared to the Simple model, the best performing Pro-
jection Fusion achieved 4.2% increase in mloU but the im-

provement of mloU for test set is very small. This could
be due to the challenging samples in the small test set.
For instance, in the test sample shown in the third row of
Figure [T0] the ground truth segmentation has points in the
bottom-left corner of image labeled as sidewalk in purple,
but the predicted segmentation has that portion classified as
drivable surface in turquoise. The street curb, in this case,
could again be the misleading factor of this incorrect seg-
mentation. To further add to the street curb issue, the pre-
diction in the last row has the labels the curb in the fore-
ground as other_flat, in pink color, where in reality, the curb
is not flat.

Furthermore, compare to classes, such as drivable sur-
face, vegetation, and car, that have plenty of points in the
point cloud, classes with fewer frequency of appearing in
the point cloud, including pedestrian, are more likely to be
labeled incorrectly. This can be seen in the second row’s ex-
ample, with the small pedestrian figure near the right edge
of the image. However, when there are crowds of pedestri-
ans together in the foreground, the segmentation performs
well, shown in the third row.

Finally, Figure[TT]visualizes the first three principal com-
ponents of the final MLP layer’s feature embedding, in the
best performing Projection Fusion model. Regions of simi-
lar RGB color indicates similar semantics, for instance, the
red points on the ground have distinctly different color val-
ues from those points forming some vertical, standing struc-
ture in green. These final feature embeddings are the input
to the linear segmentation head, which then outputs class
logits.

6. Conclusion

The results of this project demonstrate how data from
different modalities can be leveraged together for 3D se-
mantic segmentation and the advantage of such fusion ap-
proach. The Projection Fusion, which aggregate the DI-
NOV2 extracted patch tokens with PTv3 extracted point fea-
ture based on point-to-pixel projection, achieved the highest
intersection over union averaged across all lidar segmenta-
tion classes. This projection-based approach is better than

576772078a494d42b034cd16172808bc

87677207824940420d34d16172808bc(predictions)

(a) Ground truth. (b) Predictions by Projection Fu-

sion: PTv3 + DINOv2 9th layer.

Figure 10: Visualized segmentation results by projecting
3D points to image. Each row has the ground truth on the
left and prediction on the right. Top two rows are two sam-
ples from validation set and the bottom two rows are two
samples from test set.

Figure 11: PCA visualization of two samples’ final layer
point feature embeddings, input to the linear segmentation
head, from the best performing projection fusion model.

the direct, multiplication-based approach because it more
explicitly associates the potentially relevant point cloud and
image features, from which the fusion MLP can better cap-
ture the relationship between the points and pixels.

Future work can be carried out from different perspec-
tives. In terms of scalability, the full nuScenes dataset can
be used to train and validate the fusion approach. Instead
of using a single DINOv2’s Transformer layer output patch

tokens as image features, multiple layers’ outputs can be
used. Data augmentation, such as random jitter, can be
applied, but maintaining the geometry consistency across
point clouds and images as they get augmented would be
an area of challenge. With regards to improving how model
would learn the relationship between points and pixels, we
can apply less explicit association, instead try encouraging
the model to figure out how each point would correlate to
the different parts of the image itself, for example, by us-
ing attention mechanism. Furthermore, we can experiment
applying fusion at different locations or implementing syn-
ergistic pre-training instead of fusing the features extracted
by separately pre-trained models.

In conclusion, this projects offers a solid starting frame-
work for integrating models that extract point cloud features
and models that extract visual image features. In the future,
if there are better point-based or image-based models being
developed, especially those in the context of autonomous
driving, outdoor scenes, or self-supervised models trained
on very large dataset, the PTv3 and DINOv2 implemented
in the current framework can be replaced. This, along with
enhancement or different variation of the fusion model, can
contribute to further improvement in 3D semantic segmen-
tation.

7. Contributions and Acknowledgments

This project is independent from other classes and no
collaborators were involved. The following public code was
used or referenced:

1. nuScenes devkit:
github.com/nutonomy/nuscenes-devkit

2. Point Transformer v3:
github.com/Pointcept/Pointcept/releases/tag/v1.5.1

3. PTv3 backbone weights:
huggingface.co/Pointcept/PointTransformerV3

4. DINOV2 and pretrained backbone model weights:
github.com/facebookresearch/dinov2

References

[1] M. Berman, A. R. Triki, and M. B. Blaschko. The lovasz-
softmax loss: A tractable surrogate for the optimization
of the intersection-over-union measure in neural networks,
2018.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong,
Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom.
nuscenes: A multimodal dataset for autonomous driving. In
CVPR, 2020.

[3] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bo-
janowski, and A. Joulin. Emerging properties in self-
supervised vision transformers, 2021.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image

(3]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

(14]

is worth 16x16 words: Transformers for image recognition
at scale, 2021.

J. Li, H. Dai, H. Han, and Y. Ding. Mseg3d: Multi-modal
3d semantic segmentation for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 21694-21704, June
2023.

Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and
S. Han. Bevfusion: Multi-task multi-sensor fusion with uni-
fied bird’s-eye view representation, 2024.

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-
Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y.
Huang, S.-W. Li, I. Misra, M. Rabbat, V. Sharma, G. Syn-
naeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski. Dinov2: Learning robust visual features
without supervision, 2024.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation,
2017.

D. Robert, H. Raguet, and L. Landrieu. Efficient 3d semantic
segmentation with superpoint transformer. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 17195-17204, October 2023.

H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han.
Searching efficient 3d architectures with sparse point-voxel
convolution, 2020.

J.H.L.Z. H. C. O. B. A. V. W. Fong, R. Mohan. Panoptic
nuscenes: A large-scale benchmark for lidar panoptic seg-
mentation and tracking. In ICRA, 2022.

X. Wu, L. Jiang, P-S. Wang, Z. Liu, X. Liu, Y. Qiao,
W. Ouyang, T. He, and H. Zhao. Point transformer v3: Sim-
pler faster stronger. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 4840-4851, June 2024.

K. A. Zeid, K. Yilmaz, D. de Geus, A. Hermans, D. Adrian,
T. Linder, and B. Leibe. Dino in the room: Leveraging 2d
foundation models for 3d segmentation, 2025.

H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun.
Point transformer. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
16259-16268, October 2021.

